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Abstract

Principal component analysis (PCA) is routinely applied to the study of NMR based metabolomic data. PCA is used to simplify the
examination of complex metabolite mixtures obtained from biological samples that may be composed of hundreds or thousands of chem-
ical components. PCA is primarily used to identify relative changes in the concentration of metabolites to identify trends or character-
istics within the NMR data that permits discrimination between various samples that differ in their source or treatment. A common
concern with PCA of NMR data is the potential over emphasis of small changes in high concentration metabolites that would over-shad-
ow significant and large changes in low-concentration components that may lead to a skewed or irrelevant clustering of the NMR data.
We have identified an additional concern, very small and random fluctuations within the noise of the NMR spectrum can also result in
large and irrelevant variations in the PCA clustering. Alleviation of this problem is obtained by simply excluding the noise region from

the PCA by a judicious choice of a threshold above the spectral noise.

© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

NMR is an extremely versatile analytical tool where the
utility of NMR has recently been expanded to include the
analysis of the metabolome [1]. Metabolomics is a natural
extension of genomics and proteomics where the particular
state or activity of a cell is monitored through the quanti-
zation of the low-molecular weight molecules present in the
cell instead of directly following gene or protein expression
levels [2]. Metabolomics has an intrinsic advantage over
genomics and proteomics analysis since observed changes
in the metabolome are directly coupled with changes in
protein activity and cell function. A simple change in the
expression level of a gene or protein does not necessarily
correlate directly with a change in the activity level of a
protein [3].
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NMR is routinely being applied to monitor changes in
the composition and concentration of metabolites found
in biofluids and cell extracts to: (1) monitor drug toxicity
[4-7], (2) identify disease markers [4,8—11] and (3) explore
in vivo protein function and activity [3,12-14]. '"H NMR
spectrum collected on the entire metabolome obtained
from whole cell lysis or biofluids tend to be extremely com-
plex due to the presence of hundreds of low-molecular
weight compounds. Visual inspection or a spectral differ-
ence to identify metabolite concentration changes is rela-
tively cumbersome if not generally impractical for large
sample sizes. Instead, principal component analysis
(PCA) is typically used to decipher changes in NMR based
metabolomic data [15,16]. PCA is a well established statis-
tical technique that determines the directions of largest
variations in the data set, where a metabolomic data set
is composed of a series of NMR spectra collected from
numerous cell extracts or biofluid samples. The data are
generally presented as a two or three-dimensional plot
(scores plot) where the coordinate axis correspond to the


mailto:rpowers3@unl.edu

S. Halouska, R. Powers | Journal of Magnetic Resonance 178 (2006) 88-95 89

principal components (representing the directions of the
two or three largest variations in the data set). Effectively,
each NMR spectrum is reduced to a single point in the PC
coordinate axis, where similar spectra will cluster together
and variations along any of the PC axes will highlight
experimental differences between the spectra.

The success of the application of PCA in the analysis of
NMR metabolomic data is intrinsically dependent on the
consistency of sample and data handling [17]. Any ob-
served variations in the NMR data should be related to
the state of the cell and organism, as opposed to subtle
changes in chemical shifts, line-widths, baseline or artifacts
from processing. To minimize these affects and to simplify
data handling, NMR spectral data are usually divided into
buckets with widths of 0.01-0.04 ppm [18,19]. This tends to
smooth out errors from fluctuations in chemical shifts and
line-shape between NMR spectra caused by sample han-
dling or preparation. Another similar concern is the impact
of changes in abundant metabolites relative to changes in
the majority of low-concentration chemicals [20]. A rela-
tively small random change in the concentration of an
abundant metabolite would still result in an apparent large
intensity change that may potentially mask a functionally
relevant change in a low-concentration metabolite. The
negative impact on the PCA scores plot would be an unde-
sirable clustering of the NMR data that emphasized the
irrelevant random changes of the abundant metabolite in-
stead of the changes associated with the functionally rele-
vant low-concentration metabolites. To minimize this
issue, a transformation of the original data is performed
that enhances the intensity of weak peaks relative to strong
peaks and generates a constant variance in the data [10,21].

In this article, we describe the observation of another
potential source of error in PCA of NMR metabolomic
data that resulted in poor clustering of “ideal” NMR
data with high similarity. The source of this error is
the conceptual opposite of the random fluctuations of in-
tense signals from abundant metabolites described above
and as a result was completely unexpected. Extremely
small variations within the noise of high signal-to-noise
NMR spectra had a significantly and surprisingly nega-
tive impact in the quality of the clustering in PCA scores
plot.

2. Materials and methods
2.1. NMR data collection

The NMR metabolomics test data sets consisted of three
individual samples composed of either 500 mM or 1 mM of
(i) ATP, (ii) glucose, and (iii)) ATP and glucose. The com-
pounds were dissolved in 99.8% D,O with 50 mM phos-
phate buffer at pH 7.2 (uncorrected) and 5SmM of
TMSP. The NMR spectra were collected on a Bruker
500 MHz Avance spectrometer equipped with a triple-res-
onance, z-axis gradient cryoprobe. 'H NMR spectra were
collected with 128 transients at 298 K with solvent presat-

uration of the residual HDO, a sweep-width of 5482 Hz
and 32 K data points. Ten duplicate '"H NMR spectra were
collected sequentially for each of the three samples for a
data set consisting of 30 NMR spectra for both the 1 and
500 mM set of samples.

2.2. Statistical analysis

The two sets of 30 NMR spectra were processed auto-
matically using a macro in the ACD/1D NMR manager
(Advanced Chemistry Development, Toronto, Ontario).
The NMR data were Fourier transformed, zero-filled,
phased and baseline corrected. The NMR spectra were
processed using multiple protocols to eliminate the possi-
ble contribution of data processing to the observed
spread in the PCA. The NMR spectra were processed
with zero, one and four zero-fillings. The baseline was
corrected using spectrum averaging or a polynomial fit
of the noise. For spectrum averaging, the spectrum re-
gions that do not contain signals are automatically de-
fined by using a rectangular box (box half-width of 30
points). A peak is defined as having intensity 5-times
greater than the noise standard deviation, where noise
is defined as the minimal Root Mean Square error.
The baseline is constructed by averaging the spectrum
curve over these regions. Similarly, for polynomial fit
the spectrum is equally divided into 64 regions. A poly-
nomial of order 4 is fit to the regions that only contain
noise. The polynomial is then subtracted from the entire
spectrum.

The residual H,O NMR resonance between 4.87 and
5.13 ppm was set to zero and excluded from the bucket-
ing and PCA analysis. Each spectrum was referenced
with the TMSP peak set to 0.0 ppm. A table of integral
intensities bucketed into bins with a width of 0.025 or
0.04 ppm using the ACD intelligent or standard bucket-
ing schemes were then exported to MS Excel. Instead
of using a uniform bucket size of 0.025 or 0.04 ppm
throughout the spectrum, the ACD intelligent bucketing
protocol places the bucket divisions at local minima
within the spectrum to avoid the splitting of peaks be-
tween buckets. The smaller bucketing size of 0.025 ppm
resulted in a slightly better clustering of the data (see
Supplemental Figs. 1S and 2S). There is a 1.48%
improvement along P1, and 0.12% improvement along
P2 in the variance using the 0.025 ppm bucketing size.
An MS Excel macro was then used to combine the 30
spectra into a single file to normalize the binned intensi-
ties to a total integrated intensity of 1.0. The Excel
spreadsheet was then imported into SIMCA (UMET-
RICS, Kinnelon, NJ) for PCA. Exclusion of the noise re-
gions of the '"H NMR spectra was accomplished by
either limiting the bucket analysis in ACD/1ID NMR
manager to regions of the NMR spectrum that contained
manually defined peaks or by an Excel macro that set
the value of every bin below a certain intensity threshold
to zero.
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3. Results and discussion

3.1. Principal component analysis of simulated metabolomic
data

As a starting point to familiarize ourselves with the
application of principal component analysis (PCA) of
NMR based metabolomics data, we initiated a pilot study
of simulated metabolomic data. The simulated metabolo-
mic data simply consisted of three NMR samples com-
posed of ATP, glucose and an ATP-glucose mixture. To
optimize the similarity in the experimental data, duplicate
NMR spectra were collected using the same sample. This
provided us with a data set that was expected to yield tight
clustering among the repeat data sets and known variances
between the three unique samples.

The first comparison made was between the ATP and
the ATP-glucose mixture samples. Again, we anticipated
the major variance observed along PC1 would be attribut-
ed to the glucose NMR signals. Similarly, the variance
along PC2 was expected to be attributed to instrument
instability. We expected to see a relatively large variance
along the PC1 axis and a tighter cluster along PC2. The
PCA scores plot of the ATP and ATP-glucose mixture
samples is illustrated in Fig. 1. To our surprise, we ob-
served a relatively large scattering along PC2, equivalent
in magnitude to the separation in PC1, but even more trou-
bling was the observation that one of the ATP spectrum
(#2) fell outside the 95% confidence level in the PCA plot.
This observation was clearly a point of confusion. If this
was a “normal” experimental data set, the PCA would flag
this data point as an outlier and raise concerns of the origin
of this sample, but in our simulated data set this is not a
possibility. The samples are all identical. An alternative
explanation that may have lead to this outlier would be a
failure in either the data collection or the processing of
the NMR spectrum.

The success of PCA of NMR metabolomics data is
intrinsically tied to the consistency in the handling, prepa-
ration, collection, and processing of the NMR data [17].
Problems in phasing, referencing, baseline correction or

instrument stability would easily lead to the observed scat-
ter and the outlier seen along PC2. But, if any of these
problems were present it would also result in a similar scat-
ter along PC1. This is clearly not the case. It is also appar-
ent that these processing or acquisition problems are not
present by visually inspecting the NMR spectra. Fig. 2
compares the outlier ATP spectrum (#2) against the ATP
spectrum (#9), which has a minimal variation along PC2.
There is no visual difference between these two spectra that
would easily justify the large difference along PC2.
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Fig. 2. '"H NMR spectra of the (A) outlier ATP (#2) spectrum and (B)
ATP (#9) spectrum with minimal variation along PC2.
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Fig. 1. PCA scoring plots of the set of 10 ATP (M) and ATP-glucose (®) NMR spectra.
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To further verify that the processing protocol did not
contribute to the large variations along PC2, the data were
processed by varying the type of baseline correction, the
number of zero-fillings, bucket width, and the method of
binning (see Supplemental Figs. 1S-6S). Reducing the
bucket width from 0.04 to 0.025 ppm did result in a small
improvement in the scattering, with a 1.48% improvement
along PC1 and a 0.12% improvement along PC2. Changing
the baseline correction from a polynomial fit to spectral
averaging or changing the number of zero-filling from zero
to four or changing the binning method from intelligent
bucketing to standard bucketing either had no beneficial ef-
fect or increased the PC2 variation. Interestingly, the spe-
cific characteristics of the PCA scores plots (absolute
position of data points along the PC1 and PC2 axis) were
sensitive to the details of the processing parameters even
though the general appearance of each NMR spectrum
was unchanged.

It is also conceivable that the relatively high sample con-
centration of 500 mM may have inadvertently contributed
to the PC2 variation. To address this issue, the experiments
were repeated exactly as before where the ATP, glucose
and ATP-glucose concentrations were reduced to 1 mM.
Essentially identical results were observed with the lower
concentration samples (see Supplemental Figs. 7S-10S).
This clearly indicates that sample concentration is not the
source of the PC2 variation.

It is also interesting to note that the relatively more
complicated ATP-glucose NMR spectra experiences a
significantly smaller PC2 fluctuation compared to the
ATP NMR spectra. This suggests that the observed PC2
variation is not primarily related to instrument stability
since an opposite result would be expected. Simply, the
larger number of NMR peaks present in the ATP—glucose
spectrum increases the probability that a random fluctua-
tion in peak intensity caused by instrument instability
would occur between sequential data collection. Effectively,
the ATP-glucose sample contains more probes to monitor
instrument stability.

3.2. Difference loadings plot analysis of simulated
metabolomic data

Comparison of the PC2 loading plots between the outli-
er ATP (#2) spectrum and the ATP spectrum (#9), which
has a minimal variation along PC2, identifies the surprising
source of the spread along PC2 (Fig. 3). The NMR bins
that are responsible for most of the differentiation along
PC2 are primarily associated with noise regions in the spec-
trum. Even more startling is the fact that the relative fluc-
tuation in the intensity of these noise bins is extremely
small compared to the intensity of real peaks in the spec-
trum. Fig. 4 illustrates an expanded view of one of the
noise regions of the outlier ATP spectrum (#2) compared
against the ATP spectrum (#9), which has a minimal vari-
ation along PC2. This expanded noise region of the NMR
spectrum contains a large positive variation in the
difference loadings plot (bin 363, 7.82-7.83 ppm), boxed
area in Fig. 3. The expanded noise region does illustrate
some random spikes in the noise that exhibit intensities
greater than the average noise bands. These noise spikes
are consistent with normal and expected variations in the
instrument noise, and appear to correlate with the large
variations observed in the PC2 loading plot. Nevertheless,
the magnitude of the noise spikes and PC2 loadings do not
appear to correlate. The largest PC2 loading for bin 363
(7.82-7.83 ppm) is 15, but the noise spike is lower in inten-
sity compared to the spikes at 8.00 and 8.03 ppm, which
have corresponding PC2 loadings that range from ~1 to
4. It is also important to keep the relative magnitude of
these noise spikes in perspective with the remainder of
the NMR spectrum. The relative intensity of the noise
compared to real peaks, including '*C satellites, is effective-
ly zero (Fig. 3). On this scale, the relative intensity of the
noise spikes compared to the typical noise band would be
expected to be inconsequential and irrelevant. Table 1 lists
some of the intensity values in the NMR noise bins that are
responsible for the outlier ATP spectrum (#2) with corre-
sponding values for other ATP spectra. Again, the intensity
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Fig. 3. PCA loading plots difference from the comparison of the outlier ATP (#2) spectrum and an ATP (#9) spectrum with minimal variation along PC2.
The boxed area corresponds to the expanded noise regions illustrated in Fig. 4.
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Fig. 4. Expanded view of the "H NMR noise region for the (A) outlier ATP (#2) spectrum and (B) ATP (#9) spectrum with minimal variation along PC2.

Table 1

Select intensity values of NMR noise after binning and normalization

Bin (ppm)* 1 2b 3 4 5 6 7 8 9¢ 10

ATP spectra number
358 [7.69...7.71] 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.08E—07 0.00E+00 6.89E—08
359  [7.71...7.74] 0.00E+00 6.14E—07 0.00E4+00 3.17E—07 0.00E+00 6.67E—08 0.00E+00 0.00E+00 0.00E4+00 1.31E—07
360 [7.74...7.76] 0.00E+00 0.00E+00 1.36E—06 0.00E+00 2.80E—07 0.00E+00 1.68E—08 0.00E+00 1.89E—07  0.00E+00
361 [7.76...7.79] 0.00E+00 2.33E—06 7.26E—07 1.68E—06 1.69E—07 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.25E—08
362 [7.79...7.82] 1.79E—06 0.00E+00 0.00E+00 1.40E—06 0.00E+00 1.61E—06 0.00E+00 0.00E+00 0.00E+00 1.11E—06
363 [7.82...7.83] 0.00E+00 1.04E—05 1.43E—07 3.50E-07 2.69E—08 0.00E+00 0.00E+00 0.00E+00 0.00E4+00  0.00E+00
364 [7.83...7.86] 0.00E+00 0.00E+00 0.00E+00 3.58E—07 0.00E+00 0.00E+00 1.08E—06 0.00E+00 0.00E+00  0.00E+00
365 [7.86...7.88] 1.15E—06 0.00E+00 3.95E—06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.44E—06 7.72E—07
366 [7.88...7.91] 244E-05 8.51E—06 3.83E—05 2.34E-05 1.32E-05 342E-05 3.07E-05 1.05E-05 2.93E-05 9.75E—06
367 [7.91...7.92] 1.30E-05 0.00E+00 1.71E—-05 1.08E-05 3.68E—07 1.63E—05 1.86E—05 0.00E+00 1.33E—05 8.64E—07
368 [7.92...7.94] 2.04E-05 0.00E+00 2.83E—05 2.33E-05 9.09E-06 2.63E—05 246E—05 239E-06 1.94E-05 4.19E—06

# Subset of the noise displayed in Fig. 4. The list of binned noise is centered around the largest positive peak (bin 363, 7.82-7.83 ppm) in the boxed region

of Fig. 3.
® Binned noise for the outlier ATP spectrum number 2.

¢ Binned noise for the ATP spectrum with minimal variation along PC2.

of these noise bins is effectively zero with small random
fluctuations about 107°~10~7, where some values are exact-
ly zero. A large PC2 loading value was observed for bin 363
in ATP spectrum #2, where the intensity of this bin is
1.04 ¢ in spectrum #2 but varies from 0 to 1.43¢ .
Apparently, since bin 363 for most of the ATP spectra is
0, a large PC2 loading value is attributed to ATP spectrum
#2 because of a large relative difference even though the
absolute difference is infinitesimal.

The contribution of noise to the difference loadings plot
was not unique to the comparison of ATP spectra #2 and
#9. Similar results were observed when other spectra were
compared (see Supplementary Fig. 11S). The major differ-
ences in the difference loading plots were associated with
noise regions, but the specific characteristics of the differ-
ence loadings plots varied randomly. The position and
intensity of the spikes varied between the difference load-
ings plots. Again, this is consistent with the variability ob-
served along PC2 in the PCA scores plot (Fig. 1) and the
expected variability of noise. Clearly, these observations
imply that the presence of noise may be detrimental to
accurate clustering in NMR PCA scores plot.

3.3. Principal component analysis with a noise threshold

Assuming that the difference loadings plot analysis cor-
rectly identified that the PC2 variation is due to these
extremely small fluctuations in noise regions of the spec-
trum and not another artifact of the PCA, the ATP and
ATP-glucose NMR spectra were re-analyzed with the
exclusion of noise from the binning. This was accomplished
by either binning regions of the NMR spectrum that only
contained peaks or by setting all bins that are below a cer-
tain intensity threshold to exactly zero. The PCA improved
with the exclusion of the noise. None of the spectra fall
outside the 95% confidence level and the relative range of
variation along the PC2 axis have been reduced by a factor
of 4-5 for the ATP spectra (Fig. 5). Similarly, the percent
variance  significantly increased for PCl from
33.12 £+ 10.31 to 83.37 + 7.44% with the exclusion of noise.
The contribution of noise to the scores plot was also
evident by comparing 1 mM ATP NMR spectra with
500 mM ATP-glucose spectra. The same variance along
PC2 was present for | mM ATP spectra that was similarly
reduced by a ~4- to 5-fold by the exclusion of the noise.
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Fig. 5. PCA scoring plots of the set of 10 ATP (M) and ATP-glucose (@) NMR spectra after removal of the spectral noise by only binning NMR

resonances.

Conversely, 500 mM ATP-glucose spectra were tightly
clustered even with the inclusion of noise because of the rel-
atively high signal-to-noise of 500 mM ATP-glucose NMR
spectra compared to 1 mM ATP spectra (see Supplemental
Figs. 12S-13S and Table 1S). Again, the variance along
PC2 is directly correlated to the presence of noise in the
NMR spectrum.

The noise component of an NMR spectrum does not
convey any valuable information in the analysis of meta-
bolomic data, but it is routinely included to simplify the
data handling. This was based on the reasonable assump-
tion that the inclusion of noise in the binning of NMR
spectra would have a neutral impact on the PCA, where
the binning process itself would minimize the noise intensi-
ty and its variation. The largest variations expected to be
identified in PCA would be changes in the intensity of var-
ious metabolite NMR resonances. Unfortunately, our
analysis indicates that small random changes in spectral
noise may contribute to large incorrectly perceived varia-
tions in NMR spectra.

3.4. PCA including the glucose NMR data with and without
a noise threshold

To determine if the observed large variation along the
PC2 axis was an artifact created by comparing just two
distinct and tightly clustered data sets, we added a third
related NMR sample to the analysis. The third NMR

\ /
N\ \ 4
-10. ~ s -

PC1

sample only contains glucose and is expected to induce a
significant PC2 variation in the PCA score plot. The
PCA scores plot of the ATP, glucose and ATP-glucose
NMR samples is illustrated in Fig. 6. As expected, large
PCl1 and PC2 variations result from the different
composition of the three NMR spectra, effectively forming
an equilateral triangle in the scores plot. The separation
along either PC1 or PC2 is considerably larger than the
variability among any members in the three distinct clus-
ters. Nevertheless, the inclusion of the NMR noise region
still results in a noticeable spread among the repeat
NMR spectra within each cluster, especially for the ATP
and glucose samples (Fig. 6A). The larger spread for the
ATP and glucose samples is consistent with the fact that
these NMR spectra would have more noise regions relative
to the ATP-glucose spectra. Removal of the NMR noise
regions results in a significant improvement in the cluster-
ing pattern in the PCA scores plot (Fig. 6B). As initially
expected, the repeat NMR spectra are essentially on top
of each other in each of the three clusters. Clearly, the
inclusion of NMR noise regions results in a significant
spread in the clustering of the PCA scores, where the noise
does not correlate with any relevant sample characteristics.

In this “ideal” NMR metabolomic data, the large sepa-
ration present in PC1 and PC2 permits easy discrimination
of the ATP, glucose and ATP-glucose spectra despite the
observed spread within each cluster caused by the presence
of noise. Generally, this would not be the case when deal-
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Fig. 6. PCA scoring plots of the 10 ATP (M) ATP—glucose (@) and glucose (@) NMR spectra with the (A) inclusion and (B) exclusion of noise.



94 S. Halouska, R. Powers | Journal of Magnetic Resonance 178 (2006) 88-95

ing with “real” biological data obtained from numerous
cell lysis or biofluid samples. Thus, the level of discrimina-
tion expected from a set of typical NMR based metabolo-
mic data may be compromised by the inclusion of NMR
noise. The irrelevant spread in clustering induced by
NMR noise may actually obscure the underlying features
in the data resulting in the loss of any informative cluster-
ing in the PCA scores plot. Therefore, the standard proto-
col for processing NMR data for PCA should include the
exclusion of noise especially since the noise provides no
valuable information while potentially distorting the prop-
er analysis of the NMR data.

Since, biofluid or cell extract data may contain weak
NMR resonances that may be associated with functionally
important metabolites, the choice of an appropriate noise
threshold is critical to avoid the inadvertent elimination
of these potentially valuable peaks. An iterative approach
that adjusts the noise threshold to minimize the spread be-
tween repeat data points while simultaneously maximizing
the separation between data collected under various
cellular conditions may provide a mechanism to remove
the negative impact of noise without compromising the
data. A threshold corresponding to one standard deviation
of the noise would be a reasonable starting point for the
iterative approach where an upper-limit less than 2-3 times
the noise would avoid eliminating peaks that can be reli-
ably differentiated from the noise band.

4. Conclusion

The principal component analysis of NMR metabolo-
mic data is proving to be a powerful tool for the evaluation
of toxicity, protein function, and the identification of dis-
ease markers. A fundamental benefit of PCA is the identi-
fication of distinct clusters in a scores plot that highlights
discriminating characteristics reflecting the source or treat-
ment of the NMR samples. Essential to the successful
interpretation of NMR PCA data is a requirement that
the observed variations identified by PCA are related to
features of the biological sample and not an artifact of data
manipulation or sample handling. Processing NMR data
for PCA generally includes binning the entire spectrum,
which also incorporates all the noise regions. Our analysis
of “ideal” metabolomic data indicates that this inclusion of
noise may result in significant and irrelevant spreading of
the PCA scores clusters that may inhibit proper interpreta-
tion of the data. A simple solution is a routine application
of a filter to exclude the noise region below a defined peak
intensity threshold.
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Appendix A. Supplementary data

Figures illustrating the PCA of the 500 mM data set using
various processing protocols that include changes in zero-
filling, baseline correction algorithms, bucket sizes, and bin-
ning methodology. Additional figures illustrating: PCA of
the 1 mM data set, loading plot difference between a differ-
ent pair of ATP spectra and a PCA scores plot comparing
the 1 and 500 mM NMR data sets. A table that compares
the PC1 and PC2 percent variance for the 1 and 500 mM
comparisons with the inclusion and exclusion of noise.

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.jmr.2005.
08.016.
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